여백
> INVEST
KB증권, "HTS에 머신러닝 적용해 뉴스 정확도 높여"약 97%의 정확도로 광고성 뉴스 필터링

[이코노믹리뷰=정다희 기자] KB증권은 자체 개발한 머신 러닝 기법의 광고성 뉴스 필터링 시스템을 홈페이지와 HTS H-able(헤이블), MTS M-able(마블)에 적용했다고 15일 밝혔다.

KB증권에 따르면 해당 시스템은 시범 테스트에서 약 97%의 정확도로 광고성 뉴스를 필터링했다. 

KB증권은 "지금까지의 광고성 뉴스 필터링 기법은 특정 단어 몇 개 만으로 광고성 뉴스를 판별하도록 설계돼 재생성된 광고성 뉴스를 탐지해내지 못하는 한계가 있었다" 면서 "이 같은 한계점을 극복하고자 일 평균 8000 여건 정도 되는 과거 6개월 간의 뉴스 기사를 머신러닝을 통해 학습시켜 광고성 뉴스의 일부 단어가 유사한 형태로 변경되더라도 광고성 뉴스로 판별할 수 있다"고 밝혔다.

주요 알고리즘은 뉴스 본문을 구성하는 전체 단어들의 조합을 계산하고 그 구성이 학습과정을 통해 습득된 광고 뉴스의 단어 분포와 유사함을 보일 때 광고 뉴스로 판별하는 식이다.

또한, 기술 확장 차원에서 학습 데이터 관리는 아마존 클라우드 서비스를 활용하고 향후 효율적인 IT서비스 운영을 위해 상호 의존성 없이 교체 가능하고 기능별로 분리된 마이크로 서비스 아키텍처 기술을 접목시켰다는 설명이다.

하우성 KB증권 M-able Land Tribe장은 "고객들에게 유용한 정보를 지닌 뉴스만을 제공하기 위해 광고성 뉴스 필터링 시스템을 개발했다"면서 "향후, 고객 개인화 서비스 차원에서 관심 가질만한 뉴스를 개인별로 추천하고 주요 뉴스를 그룹핑함과 동시에 요약 제공하는 고차원 서비스로 발전 시킬 계획"이라고 말했다.

정다희 기자  |  jdh23@econovill.com  |  승인 2019.10.15  14:28:14
정다희 기자의 다른기사 보기

[태그]

#이코노믹리뷰, #정다희

[관련기사]

이 기사에 대한 댓글 이야기 (0)
자동등록방지용 코드를 입력하세요!   
확인
- 200자까지 쓰실 수 있습니다. (현재 0 byte / 최대 400byte)
- 욕설등 인신공격성 글은 삭제 합니다. [운영원칙]
이 기사에 대한 댓글 이야기 (0)

SPONSORED
여백
여백
전문가 칼럼
동영상
PREV NEXT
여백
포토뉴스
여백